How Do You Find The Derivative Of Y Arcsin 2x 1
In these cases you need chain rule .
##dy/(dx)## =##d/(dz## x##dz/dx##===>
It’s better to take ##d/(dz## & ## dz/dx## separately .
##d/(dz##= ##d/(d(2x+1)##.##arcsin (2x+1)##.
##d/(dz##=##1/sqrt(1-(2x+1)^2##= ##1/(2sqrt(-x^2-x)## ——(1)
##dz/dx##= ##d/dx## .## (2x+1)## =##d/dx 2x## = ##2## ——(2)
Then multiply (1) &(2),
So finally you get ##dy/(dx)##= ##1/(2sqrt(-x^2-x)####2##
##dy/(dx)##=##1/(sqrt(-x^2-x)## ; where ##y## = ##arcsin(2x+1)##
Leave a Reply
Want to join the discussion?Feel free to contribute!